
1

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Reasoning in Answer Set Prolog

Chitta Baral & Michael Gelfond

2

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Outline

• Introduction

• Defaults in AnsProlog

• Syntax and Semantics

• Inference Engines

• Answer Set Programming

• Modeling Change

3

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Motivating Example 1

Story: On the first of Dec John and Bob met in Paris.

Immediately after the meeting John took the plane from

Paris to Baghdad.

Question: Where should one look for John and Bob on

Dec 2nd?

Answer: John - Baghdad, Bob - Paris.

Among other things to get this answer we need to know

that action of “John traveling to Baghdad” is normally

successful and causes change in the whereabouts of John

but not in those of Bob.

4

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Motivating Example 2

Story: On the first of Dec John and Bob met in Paris.

Immediately after the meeting John took the plane from

Paris to Baghdad.

New Info: On the way the plane stopped in Rome where

John was arrested.

Question: Where should one look for John and Bob on

Dec 2nd?

The new information forced us to withdraw the previous

conclusion. (i.e. our reasoning is non-monotonic).

5

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

How to automate such reasoning?

Basic Idea:

• Use declarative language to describe the domain.

• Express various questions as formal queries to the re-

sulting program.

• Use inference engine, i.e. a collection of reasoning algo-

rithms, to answer these queries.

6

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Language Requirements

1. Allow reasoning about defaults, causal reasoning, epis-

temic reasoning, etc.

2. Allow elaboration tolerant representations of knowl-

edge - small additions to informal body of knowledge

should correspond to small additions to the formal KB.

3. Have a methodology of representing knowledge.

4. Mathematical properties of the language should be

well understood.

5. Inference engines should be reasonably efficient.

7

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Problem: What Language and What

Inference?

CANDIDATES:

• First-Order Language and Classical Logic.

• Super-Classical Non-monotonic Logics: Circumscrip-

tion, Default Logic, Epistemic Logics.

• Answer Set Prolog

8

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Attempts to express “normally” in other

languages

• T1: Bird’s normally fly. Tweety is a Bird.

• T2: Penguins are birds. Penguin’s do not fly. Tweety

is a penguin.

• How to represent T1 and T2 so that one can conclude

‘Tweety flies’ from T1, while one does not conclude

it (and in fact concludes ‘Tweety does not fly’) from

T1 ∪ T2.

9

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

A first attempt using first order logic

• T ′
1: ∀X.bird(X) ⇒ fly(X)

bird(tweety)

• T ′
2: ∀X.penguin(X) ⇒ bird(X)

∀X.penguin(X) ⇒ ¬fly(X)

penguin(tweety).

• T ′
1 |= fly(tweety).

But T ′
1 ∪ T ′

2 |= fly(tweety), and T ′
1 ∪ T ′

2 |= ¬fly(tweety).

10

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Another attempt using (an extension of) first

order logic

• T ′′
1 : ∀X.bird(X) ∧ ¬ab(X) ⇒ fly(X)

bird(tweety)

• T ′′
2 : ∀X.penguin(X) ⇒ bird(X)

∀X.penguin(X) ⇒ ¬fly(X)

penguin(tweety).

• Need careful minimization of ab. (not easy, one needs

to worry about unintended impact of minimization on

other predicates.)

11

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

• A quote from Brachman and Levesque, 2004 after a

laborious attempt in formalizing this example in pages

215-222:

This means that there is a serious limitation in using circum-

scription for default reasoning.

12

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Some history

Answer Set Prolog (AnsProlog) was introduced around

1990 by V. Lifschitz and M. Gelfond. It is rooted in re-

search on the semantics of negation as failure in ‘classical’

Prolog (Clark, Apt, Blair) and in the work on nonmono-

tonic logics, especially that on Autoepistemic Logic of R.

Moore and Default Logic of R. Reiter.

Several groups in Europe and the USA developed rather

efficient inference engines for computing answer sets of

(finite) logic programs.

13

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Informal Example: Defaults

• Defaults are statements containing words “normally,

typically, as a rule”.

• A large part of our education seems to consists of learn-

ing various defaults, their exceptions, and the skill of rea-

soning with them.

• Defaults do not occur in the language of mathematics,

but play very important role in everyday, commonsense

reasoning.

14

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Example: Family Problems

Suppose you are Sam’s teacher and you strongly believe

that to pass the class Sam needs some extra help. You

convey this information to Sam’s father, John, and expect

some actions on his part. Your reasoning probably goes

along these lines:

John is Sam’s parent.

NORMALLY, parents care about their children.

Therefore John cares about Sam and will help him with

his study.

The second statement is a typical example of a default.

15

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

About Caring

To model this reasoning we introduce relation

cares(X, Y) — X cares for Y , and theory Π0:

father(john, sam). mother(mary, sam).

parent(X, Y) ← father(X, Y).

parent(X, Y) ← mother(X,Y).

child(X, Y) ← parent(Y, X).

cares(X, Y) ← parent(X, Y). (Ignoring “normally”)

16

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Informal Semantics

• Program Π can be viewed as specification for sets of

beliefs of a rational reasoner associated with Π.

• Beliefs are represented by consistent sets of literals,

called answer sets, which must satisfy the rules and the

Rationality Principle which says:

“Believe nothing you are not forced to believe”.

17

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Answer Set A of Π0:

father(john, sam). mother(mary, sam).

parent(john, sam). parent(mary, sam).

child(sam, john). child(sam, mary).

cares(john, sam). cares(mary, sam).

Answer to query q is YES if q ∈ A, NO if ¬q ∈ A, UN-

KNOWN otherwise.

cares(john, sam)? YES

father(mary, sam)? UNKNOWN

18

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Adding Negative Information:

¬father(X1, Y) ← father(X2, Y), X1 <> X2

The new answer set is

father(john, sam). mother(mary, sam).

¬father(mary, sam). ¬father(sam, sam) . . .

parent(john, sam). parent(mary, sam).

child(sam, john). child(sam, mary).

cares(john, sam). cares(mary, sam).

cares(john, sam)? YES father(mary, sam)? NO

father(mary, john) is still UNKNOWN

19

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

About Caring — Non-Monotonicity

Assume now that in addition to the default

1. “normally parents care about their children”

you learn that

2. “John is an exception to this rule. He does not care

about his children.”

In everyday reasoning this new information does not cause

contradiction. We simply withdraw our previous con-

clusion, cares(john, sam), and replace it by the new one,

¬cares(john, sam). (Need non-monotonicity)

20

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Representing Defaults in AnsProlog

To reason with defaults we need a new logical connective

not called Default Negation.

not p says “no reason to believe p”.

¬p says “p is false”.

Program p ← not q has one answer set {p}.

21

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Representing Defaults in AnsProlog

In Answer Set Prolog a default “Normally elements of

class C have property P” is often represented by a rule:

p(X) ← c(X),

not ab(d, X),

not ¬p(X).

d is the default’s name (given by the program designer).

ab(d, X) says that default d is not applicable to X; not ¬p(X)

is read as ‘p(X) MAY be true’.

22

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Example: Caring Parents

Default “normally parents care about their children” will

be represented by the rule (d1):

cares(X, Y) ← parent(X, Y),

not ab(d1, X, Y),

not ¬cares(X, Y).

If all our program knows about John is

father(john, sam)

it will conclude cares(john, sam).

23

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Uncaring John

What happens when we learn that John does not care

about his children? There is no way to incorporate this

information into classical representation of the story with-

out changing some of its axioms.

We can however add it to the AnsProlog program using

the rule:

¬cares(john, X) ← child(X, john).

The new program is consistent and entails

¬cares(john, sam), cares(mary, sam).

24

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Exceptions to Defaults

A default d = “Normally elements of c have property p”

may have two types of exceptions:

• “strong” - refute the default’s conclusion

(Birds normally fly but penguins do not.)

• “weak” - render the default inapplicable.

(Wounded birds may or may not fly.)

25

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Representing Exceptions

A weak exception e(X) to d is encoded by a so called

CANCELATION axiom

ab(d, X) ← not ¬e(X).

which says that d is not applicable to X if X MAY BE a

weak exception to d.

If e is a strong exception we need one more rule,

¬p(X) ← e(X)

which will allow us to defeat d’s conclusion.

26

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Weak Exception - an Example

To illustrate the notion of weak exception let us emulate a

cautious reasoner who does not want to apply default (d1)

to people whose spouses do not care about their children.

Such a reasoner will prefer not to make any judgment on

Mary’s relation to Sam. This can be achieved by a rule:

ab(d1, P1, C) ← parent(P1, C),

parent(P2, C),

¬cares(P2, C).

New program answers no to query cares(john, sam) and

maybe to query cares(mary, sam).

27

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Incompleteness in Databases

Consider a database table representing a tentative sum-

mer schedule of a CS department.

Professor Course

mike pascal

john c

staff lisp

“staff” is a special constant (called Null value) which

stands for an unknown professor. It expresses the fact

that Lisp will be taught by SOME professor (possibly

different from Mike and John).

28

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

AnsProlog representation

Relation t(P, C) - professor P teaches a course C.

Assume that we are given complete collections of profes-

sors and courses.

Positive info from the table

t(mike, pascal). t(john, c). t(staff, lisp).

To represent negative info we use default d: Normally, P

teaches C only if this is listed in the schedule.

29

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

AnsProlog Representation

¬t(P, C) ← prof (P), course(C),

not ab(d, P, C),

not t(P, C).

The default d shall not be applicable to Lisp, or any other

course taught by “staff” - weak exception.

ab(d, P, C) ← t(staff, C).

ANSWERS:

?t(mike, c) - NO

?t(mike, lisp) - UNKNOWN

30

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Semantics of Declarative Languages

• A declarative program (DP) is a collection of statements

describing objects of a domain and their properties.

• Semantics defines a notion of a model of a DP (i.e. a

possible state of the world and/or agent compatible with

the DP statements) and characterizes the collection of

valid consequences of a program.

31

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

SYNTAX and SEMANTICS of AnsProlog

TERMS over a signature σ are defined as usual.

ATOM – an expression of the form p(t1, . . . , tn).

LITERAL – p(t1, . . . , tn) or ¬p(t1, . . . , tn).

32

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

The syntax of AnsProlog

• A program Π of AnsProlog (sometimes called a knowl-

edge base) consists of a signature σ and a collection of

rules of the form (1):

l0 or . . . or li ← li+1, . . . , lm, not lm+1, . . . , not ln.

where l’s are literals of σ.

The left-hand side of a rule is called the Head and the

right-hand side the Body. Both, the head and the body

can be empty.

33

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

The syntax of AnsProlog

Object, function and predicate symbols of σ are denoted

by identifiers starting with small letters. Variables are

identifiers starting with the capital ones.

Variables of Π range over ground terms of σ. A rule r

with variables is viewed as a set of its ground instantia-

tions - rules obtained from r by replacing r’s variables by

ground terms of σ. This means that it is enough to define

the semantics of ground (i.e. not containing variables)

programs.

34

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

More notation and terminology

A ground set S of literals satisfies the body of rule r

l0 or . . . or li ← li+1, . . . , lm, not lm+1, . . . , not ln.

if {li+1, . . . , lm} ⊆ S and {lm+1, . . . , ln} ∩ S = ∅

S satisfies the head of r if {l0, . . . , li} ∩ S 6= ∅

S satisfies r if whenever S satisfies the body of r it satisfies

its head.

Sets {p(a)} and {p(a), q(b)} satisfy rule

p(a) ← q(b), not t(c)

while set {q(b)} does not.

35

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Informal semantics of AnsProlog

• Ground program Π can be viewed as a specification for

the sets of beliefs to be held by a rational reasoner associ-

ated with Π. Such sets will be represented by collection of

ground literals. In forming such sets the reasoner must:

1. Satisfy the rules of P .

2. Satisfy the “rationality principle” which says: “Believe

nothing you are not forced to believe”.

36

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Informal semantics of AnsProlog

Beliefs of Π are represented by sets of ground literals

called Answer Sets (Stable Models) of Π, e.g., a program

Π0

p(a) ← not q(a).

p(b) ← not q(b).

q(a).

has one answer set S0 = {q(a), p(b)}.

The answer set of

Π1 = Π0 ∪ {¬q(X) ← not q(X).}

is S1 = {q(a),¬q(b), p(b)}.

37

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Defining answer sets - Part 1

Let program Π consist of rules of the form:

l0 or . . . or li ← li+1, . . . , lm. (1)

Answer Set of Π is a consistent set S of ground literals

such that:

• S is closed under the rules of Π;

• S is minimal i.e. no proper subset of S satisfies the rules

of Π.

38

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Examples

• p(a) ← ¬p(b). ¬p(a).

A = {¬p(a)}

• p(b) ← ¬p(a). ¬p(a).

A = {¬p(a), p(b)}

• p(b) ← ¬p(a). p(b) ← p(a).

A = { }

• p(a) or p(b).

39

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Defining answer sets - Part 2

Let Π be an arbitrary program. By ΠS we denote the

program obtained from Π by

(i) removing all rules containing not l such that l ∈ S;

(ii) removing all other premises containing not .

Definition: S is an Answer Set of Π iff S is an answer set

of ΠS.

40

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Example

Π ΠS S = {q(a), p(b)}

p(a) ← not q(a).

p(b) ← not q(b). p(b).

q(a). q(a).

{q(a), p(b)} is an answer set of Π

41

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Examples

• Π0 = {p(a) ← not p(a).} No answer set.

• Π1 = {p(a) ← not p(b). p(b) ← not p(a).}

A1 = {p(a)} A2 = {p(b)}

• Π2 = Π1 ∪ {← p(b).}

A = {p(a)}

• Π3 = Π2 ∪ {¬p(a).} No answer set

42

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Inference Engines

Answer set solvers, Smodels, Dlv, etc. compute answer sets

of logic programs without function symbols.

The problem is NP-complete for programs without dis-

junction and Σ2P for arbitrary programs.

The sound and complete algorithms use efficient ground-

ing methods from deductive databases and Davis - Put-

nam procedure with various heuristics from propositional

satisfiability algorithms.

43

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Inference Engines

Answer set solvers Asset, Cmodels, etc. reduce computa-

tion of answer sets to (possibly multiple) calls to satisfi-

ability solvers.

Even though for a large class of problems one call is suf-

ficient in general it cannot be limited.

Since satisfiability solvers were in existence for a long

time for non-recursive programs this approach is usually

faster.

44

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Inference Engines

Resolution based systems, Prolog, XSB, SLG etc, answer

queries of the form q(X).

Allow function symbols but only applicable to programs

with one answer set and no serious recursion.

The problem is undecidable and hence the algorithms are

incomplete.

45

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Answer Set Programming

• Model a domain by describing its objects and relations

between these objects.

• Describe properties of these relations by a program T

of AnsProlog.

• Reduce a problem to be solved to the problem of finding

answer set(s) of T .

• Use AnsProlog reasoning systems to find these sets.

46

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Computing Hamiltonian Paths

Given: Directed graph G, initial vertex s0. Find a path

from s0 to s0 which visit each node exactly once.

Graph represented by

node(s0). . . . edge(si, sj). . . . init(s0).

Idea: Represent every HP by a set of atoms of the form

in(s0, s1). . . . in(sk, s0).

which belongs to an answer set of program Π associated

with the problem.

47

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Constructing the program

Describe conditions on a collection P of atoms of the form

in(s1, s2) which will make P a HP.

• P visits every node V at most once:

← in(V1, V), in(V 22, V), V1 <> V2

← in(V, V1), in(V, V2), V1 <> V2

48

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

• P visits every node of the graph.

Introduce relation reached(V) which holds if P visits V on

its way from the initial node:

reached(V2) ← init(V1), in(V1, V2).

reached(V2) ← reached(V1), in(V1, V2).

The constraint

← not reached(V).

guarantees that every node is reached.

49

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

To complete the solution we need to make sure that our

program will consider every edge of the graph. This can

be done by the rule

in(V1, V2) or ¬in(V1, V2) ← edge(V1, V2).

Proposition.

There is one-to-one correspondence between answer sets

of Π and HPs in G.

These models can be computed by systems like smodels or

dlv.

50

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Reasoning in Dynamic domains

Need to describe

1. transition diagram representing possible trajectories

of the system;

2. history of observations and action occurrences;

3. goals and information about preferred or most promis-

ing actions needed to achieve these goals.

51

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Describing the Diagram - Action Languages

Effects of actions are given by:

• dynamic causal law:

a causes f if p

• state constraint:

f if p

• impossibility condition:

a impossible if p

Semantics is given by defining states and transitions of

the diagram (McCain, Turner).

52

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Translation to AnsProlog

a causes f if p

holds(f, T + 1) ← holds(p, T), occurs(a, T).

f if p

holds(f, T) ← holds(p, T).

a impossible if p

← occurs(a, T), holds(p, T).

53

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Translation to AnsProlog

Causal laws describe changes caused by action a.

To describe things that stay the same we use Inertia Ax-

iom - ”Things tend to stay as they are”.

holds(F, T + 1) ← holds(F, T), not ¬holds(F, T + 1)

¬holds(F, T + 1) ← ¬holds(F, T), not holds(F, T + 1)

This is a standard representation of a default.

54

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Computing successor states

Proposition. Let σ0 be a state of a dynamic domain, a be

an action, and

h(σ0) = {holds(f, 0) : f ∈ σ0} ∪ {¬holds(f, 0) : ¬f ∈ σ0}

Then there is one-to-one correspondence between the suc-

cessor states of 〈σ0, a〉 and answer sets of the program

Π ∪ h(σ0) ∪ o(a, 0)

55

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

A COMMONSENSE THEORY OF TRAVEL

• Basic Objects

• Actions and Fluents

• Causal Laws

• Examples

56

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

The basic objects

A trip may have many participants, use vehicles of differ-

ent types, and follow complex routes.

It needs to have the name, the origin, the destination,

and may have other attributes such as “mode of transp”,

“vehicle used”, etc.

We’ll often name trips as f (C11, C2) - a trip from city C1

to city C2.

A trip may be in transit (en route) or at one of its possible

stops.

57

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Travel Documents

travel_document(passport).

need(P,passport,F) :-

crosses_border(F).

crosses_border(F) :-

origin(F,C1),

dest(F,C2),

C1 <> C2.

58

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

ACTIONS and FLUENTS

ACTIONS:

depart(F) stop(F,D)

go_on(P,F) get(P,TD) become_participant(P,F)

FLUENTS:

at(F,L) at(P,L)

participant(P,F) has(P,TD)

59

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Inertia Axioms

h(Fl,T+1) :- T < n,

h(Fl,T),

not -h(Fl,T+1).

-h(Fl,T+1) :- T < n,

-h(Fl,T),

not h(Fl,T+1).

60

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Effects of Actions

h(participant(P,F),T+1) :-

o(become_participant(P,F),T).

h(has(P,TD),T+1) :-

o(get(P,TD),T).

h(at(P,D),T) :-

h(participant(P,F),T),

h(at(F,D),T).

61

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Example

• John is in Boston on Dec 1. He has no passport. Can

he go to Paris on Dec. 3?

• Translation of first two statements is:

h(at(john,boston),0). -h(has(john,passport),0).

time(0,d,1). time(0,m,12).

The last statement is translated as:

goal(T) :-

o(go_on(john,f(boston,paris)),T),

time(T,d,3).time(T,m,12).

62

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Example 2

Load the commonsense theory of travel and geography

and calendar modules. Since the query has a form goal(T)

we load a planning module.

If the resulting program has a model the answer to our

query is yes. Otherwise it is no.

63

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Planning Module

n - length of plan; ”goal” and ”actor” (John) is obtained

from the text.

yes :- goal(T).

o(A,T) or -o(A,T) :- actor(john,A),T < n.

:- o(A1,T),o(A2,T),A1 <> A2.

64

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Example: modeling RCS

In its simplest form the RCS can be viewed as

(a) a directed graph, with nodes corresponding to tanks,

pipe junctions, and jets, and links labeled by valves.

(b) A collection of switches controlling the positions of

valves.

65

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Simplified view of the RCS

Facts describing objects of the domain and their connec-

tions:

tank_of(tank,fwd_rcs).

jet_of(jet,fwd_rcs).

link(tank,junc2,v3).

controls(sw3,v3).

66

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Modeling the RCS

A state of the RCS is given by fluents, including:

• pressurized by(N, Tk) - node N is pressurized by a tank

Tk

• in state(V, P) - valve V is in valve position P

• in state(Sw, P) - switch Sw is in switch position P

A typical action is:

• flip(Sw, P) - flip switch Sw to position P

67

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Effects of actions

Direct effect of flip(Sw, P) on in state:

holds(in_state(Sw,P),T+1) :-

occurs(flip(Sw,P),T),

not stuck(Sw).

68

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Indirect effect of flip(Sw, P) on in state:

holds(in_state(V,P),T) :-

controls(Sw,V),

holds(in_state(Sw,P),T),

not stuck(V),

not bad_circuitry(V).

69

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Recursive rules for indirect effects

Definition of indirect effects of flip(Sw, P) on

pressurized by(N, Tk) is recursive:

holds(pressurized_by(Tk,Tk),T) :-

tank(Tk).

holds(pressurized_by(N1,Tk),T) :-

link(N2,N1,V),

holds(in_state(V,open),T),

holds(pressurized_by(N2,Tk),T).

The effect of a single action propagates and affects several

fluents.

70

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

Planning with AnsProlog

Given:

(a) collection I of RCS faults

(b) goal - state satisfying set G of fluents

Finding a plan for G of max length n can be reduced to

finding an answer set of program

T ∪ I ∪ PM (2)

where PM is

71

ARDA/AQUAINT Arizona State U, Texas Tech U, & Monmouth U.

The Planning Module

time(0..n).

goal :-

holds(maneuver_of(plus_z,left_rcs),T),

holds(maneuver_of(plus_z,right_rcs),T),

holds(maneuver_of(plus_z,fwd_rcs),T).

:- not goal.

1{occurs(A,T): action(A)}1 :- not goal(T).

Planning module is a VERY small program of AnsProlog!

